
Introduction to
Probability and Statistics

Calculation and Chance
Most  experimental  searches  for  paranormal  phenomena  are  statistical  in
nature.  A subject  repeatedly  attempts  a  task  with  a  known  probability  of
success due to chance, then the number of actual successes is compared to the
chance expectation. If a subject scores consistently higher or lower than the
chance expectation after a large number of attempts,  one can calculate the
probability of such a score due purely to chance, and then argue, if the chance
probability is sufficiently small, that the results are evidence for the existence
of  some mechanism (precognition,  telepathy,  psychokinesis,  cheating,  etc.)
which  allowed  the  subject  to  perform  better  than  chance  would  seem  to
permit.

Suppose you ask a subject to guess, before it is flipped, whether a coin will
land with heads or tails up. Assuming the coin is fair (has the same probability
of heads and tails), the chance of guessing correctly is 50%, so you'd expect
half the guesses to be correct and half to be wrong. So, if we ask the subject to
guess heads or tails for each of 100 coin flips, we'd expect about 50 of the
guesses to be correct. Suppose a new subject walks into the lab and manages
to  guess  heads  or  tails  correctly  for  60  out  of  100  tosses.  Evidence  of
precognition, or perhaps the subject's  possessing a telekinetic power which
causes the coin to land with the guessed face up? Well,…no. In all likelihood,
we've observed nothing more than good luck. The probability of 60 correct
guesses out of 100 is about 2.8%, which means that if we do a large number of
experiments flipping 100 coins, about every 35 experiments we can expect a
score of 60 or better, purely due to chance.

But suppose this subject continues to guess about 60 right out of a hundred, so
that after ten runs of 100 tosses—1000 tosses in all, the subject has made 600
correct guesses. The probability of that  happening purely by chance is less
than one in seven billion, so it's time to start thinking about explanations other
than luck. Still, improbable things happen all the time: if you hit a golf ball,
the odds it will land on a given blade of grass are millions to one, yet (unless it
ends up in the lake or a sand trap) it is certain to land on some blades of grass.

Finally,  suppose  this  “dream subject”  continues  to  guess  60% of  the  flips
correctly, observed by multiple video cameras, under conditions prescribed by
skeptics and debunkers, using a coin provided and flipped by The Amazing

Introduction to Probability and Statistics http://www.fourmilab.ch/rpkp/experiments/statistics.html

1 of 22



Randi himself, with a final tally of 1200 correct guesses in 2000 flips. You'd
have to try the 2000 flips more than 5×1018 times before you'd expect that
result to occur by chance. If it takes a day to do 2000 guesses and coin flips, it
would  take  more  than  1.3×1016  years  of  2000  flips  per  day  before  you'd
expect to see 1200 correct guesses due to chance. That's more than a million
times the age of the universe, so you'd better get started soon!

Claims of evidence for the paranormal are usually based upon statistics which
diverge so far from the expectation due to chance that some other mechanism
seems necessary to explain the experimental results. To interpret the results of
our  RetroPsychoKinesis  experiments,  we'll  be  using  the  mathematics  of
probability and statistics, so it's worth spending some time explaining how we
go about quantifying the consequences of chance.

Note to mathematicians: The following discussion of probability is deliberately
simplified to consider only binomial and normal distributions with a probability
of  0.5,  the presumed probability  of  success in  the experiments  in  question.  I
decided  that  presenting  and  discussing  the  equations  for  arbitrary  probability
would only decrease the probability that readers would persevere and arrive at an
understanding of the fundamentals of probability theory.

Twelve and a half cents: one bit!
In slang harking back to the days of gold doubloons and pieces of eight, the
United  States  quarter-dollar  coin  is  nicknamed  “two  bits”.  The  Fourmilab
radioactive random number generator produces a stream of binary ones and
zeroes, or bits. Since we expect the generator to produce ones and zeroes with
equal probability, each bit from the generator is equivalent to a coin flip: heads
for one and tails for zero. When we run experiments with the generator, in
effect, we're flipping a binary coin, one bit—twelve and a half cents!

Two Bits  One Bit

    

Heads Tails  Heads Tails

(We could, of course, have called zero heads and one tails; since both occur
with  equal  probability,  the  choice  is  arbitrary.)  Each  bit  produced  by  the
random number generator is a flip of our one-bit coin. Now the key thing to
keep in mind about a genuine random number generator or flip of a fair coin is
that it has no memory or, as mathematicians say, each bit from the generator or
flip is independent. Even if, by chance, the coin has come up heads ten times
in a row, the probability of getting heads or tails on the next flip is precisely
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equal. Gamblers who've seen a coin come up heads ten times in a row may
believe “tails is way overdue”, but the coin doesn't know and couldn't care less
about the last ten flips; the next flip is just as likely to be the eleventh head in a
row as the tail that breaks the streak.

Even though there is no way whatsoever to predict the outcome of the next
flip, if we flip a coin a number of times, the laws of probability allow us to
predict, with greater accuracy as the number of flips increases, the probability
of obtaining various results. In the discussion that follows, we'll ignore the
order of the flips and only count how many times the coin came up heads.
Since heads is one and tails is zero, we can just add up the results from the
flips, or the bits from the random generator.

Four Flips

Suppose we flip a coin four times. Since each flip can come up heads or tails,
there are 16 possible outcomes, tabulated below, grouped by the number of
heads in the four flips.

Number
of Heads Results of Flips Number

of Ways

0    1

1

   

   

   

   

4

2

   

   

   

   

   

   

6
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3

   

   

   

   

4

4    1

Number of Ways summarises how many different ways the results of the four
flips could end up with a given number of heads. Since the only way to get
zero heads is for all four flips to be tails, there's only one way that can occur.
One head out of four flips can happen four different ways since each of the
four flips could have been the head. Two heads out of four flips can happen six
different ways, as tabulated. And since what's true of heads applies equally to
tails, there are four ways to get three heads and one way to get four.

Mathematically,  the  number  of  ways to  get  x  heads (or  tails)  in  n  flips  is
spoken of as the “number of combinations of n  things taken x  at  a time”,
which is written as:

This,  it  turns  out,  can  be  calculated  for  any  positive  integers  n  and  x
whatsoever, as follows.

For example, if we plug in 4 for n and 2 for x, we get

4! / (2! (4 − 2)!) = 4! / (2! 2!) = 24 / (2 2) = 24 / 4 = 6

as expected. Plotting the number of ways we can get different numbers of
heads yields the following graph.
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Probability
Since the coin is fair, each flip has an equal chance of coming up heads or
tails, so all 16 possible outcomes tabulated above are equally probable. But
since there are 6 ways to get 2 heads, in four flips the probability of two heads
is greater than that of any other result. We express probability as a number
between 0 and 1. A probability of zero is a result which cannot ever occur: the
probability of getting five heads in four flips is  zero.  A probability of one
represents certainty: if you flip a coin, the probability you'll get heads or tails
is one (assuming it can't land on the rim, fall into a black hole, or some such).

The probability of getting a given number of heads from four flips is, then,
simply the number of ways that number of heads can occur, divided by the
number of total results of four flips, 16. We can then tabulate the probabilities
as follows.

Number
of Heads

Number
of Ways Probability

0 1 1/16 = 0.0625

1 4 4/16 = 0.25

2 6 6/16 = 0.375

3 4 4/16 = 0.25

4 1 1/16 = 0.0625

Since we are absolutely certain the number of heads we get in four flips is
going to be between zero and four, the probabilities of the different numbers
of heads should add up to 1. Summing the probabilities in the table confirms
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this. Further, we can calculate the probability of any collection of results by
adding the individual probabilities of each. Suppose we'd like to know the
probability of getting fewer than three heads from four flips. There are three
ways this can happen: zero, one, or two heads. The probability of fewer than
three, then, is the sum of the probabilities of these results, 1/16 + 4/16 + 6/16
= 11/16 = 0.6875, or a little more than two out of three. So to calculate the
probability of one outcome or another, sum the probabilities.

To get probability of one result and another from two separate experiments,
multiply the individual probabilities. The probability of getting one head in
four flips is 4/16 = 1/4 = 0.25. What's the probability of getting one head in
each of two successive sets of four flips? Well, it's just 1/4 × 1/4 = 1/16 =
0.0625.

The probability for any number of heads x in any number of flips n is thus:

the number of ways in which x  heads can occur in n  flips, divided by the
number of different possible results of the series of flips, measured by number
of heads. But there's no need to sum the combinations in the denominator,
since the number of possible results is simply two raised to the power of the
number of flips. So, we can simplify the expression for the probability to:

More Flips

Let's see how the probability behaves as we make more and more flips. Since
we have a general formula for calculating the probability for any number of
heads in any number of  flips,  we can graph of  the probability  for  various
numbers of flips.
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8 Flips   

16 Flips   

32 Flips   
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64 Flips   

128 Flips   

In every case, the peak probability is at half the number of flips and declines
on both sides, more steeply as the number of flips increases. This is the simple
consequence of there being many more possible ways for results close to half
heads and tails to occur than ways that result in a substantial majority of heads
or tails. The RPKP experiments involve a sequence of 1024 random bits, in
which  the  most  probable  results  form  a  narrow  curve  centred  at  512.  A
document giving probabilities for results of 1024 bit experiments with chance
expectations greater than one in 100 thousand million runs is available, as is a
much  larger  table  listing  probabilities  for  all  possible  results.  (The  latter
document is more than 150K bytes and will take a while to download, and
contains  a  very  large  table  which  some  Web  browsers,  particularly  on
machines with limited memory, may not display properly.)

Perfectly Normal

As we make more and more flips,  the graph of the probability of a given
number  of  heads  becomes  smoother  and  approaches  the  “bell  curve”,  or
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normal distribution, as a limit. The normal distribution gives the probability
for x heads in n flips as:

where μ=n/2 and σ is the standard deviation, a measure of the breadth of the
curve which, for equal probability coin flipping, is:

We keep the standard deviation separate, as opposed to merging it into the
normal distribution probability equation, because it will play an important rôle
in  interpreting  the  results  of  our  experiments.  To  show  how  closely  the
probability chart approaches the normal distribution even for a relatively small
number of flips, here's the normal distribution plotted in red, with the actual
probabilities for number of heads in 128 flips shown as blue bars.

The probability the outcome of an experiment with a sufficiently large number
of trials is due to chance can be calculated directly from the result, and the
mean and standard deviation for the number of trials in the experiment. For
additional details, including an interactive probability calculator, please visit
the z Score Probability Calculator.

Calculation and Reality
This  is  all  very  persuasive,  you  might  say,  and  the  formulas  are  suitably
intimidating,  but  does the real  world actually behave this  way? Well,  as  a
matter of fact, it does, as we can see from a simple experiment. Get a coin, flip
it 32 times, and write down the number of times heads came up. Now repeat
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the experiment fifty thousand times. When you're done, make a graph of the
number  of  32-flip  sets  which  resulted  in  a  given  number  of  heads.
Hmmmm…32 times  50,000  is  1.6  million,  so  if  you  flip  the  coin  once  a
second,  twenty-four  hours  per  day,  it'll  take  eighteen  and  a  half  days  to
complete the experiment….

Instead of marathon coin-flipping, let's use the same HotBits hardware random
number  generator  our  experiments  employ.  It's  a  simple  matter  of
programming to withdraw 1.6 million bits from the generator, divide them up
into 50,000 sets of 32 bits each, then compute a histogram of the number of
sets containing each possible number of one bits (heads). The results from this
experiment are presented in the following graph.

The red curve is the number of runs expected to result in each value of heads,
which is simply the probability of that number of heads multiplied by the total
number  of  experimental  runs,  50,000.  The  blue  diamonds  are  the  actual
number  of  32  bit  sets  observed  to  contain  each  number  of  one  bits.  It  is
evident  that  the  experimental  results  closely  match  the  expectation  from
probability. Just as the probability curve approaches the normal distribution
for large numbers of runs, experimental results from a truly random source
will inexorably converge on the predictions of probability as the number of
runs increases.

If your Web browser supports Java
applets, our Probability Pipe Organ
lets you run interactive experiments
which demonstrate how the results
from  random  data  approach  the
normal  curve  expectation  as  the
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number  of  experiments  grows
large.

Experiments and Expectations
Performing an experiment amounts to asking the Universe a question. For the
answer, the experimental results, to be of any use, you have to be absolutely
sure you've phrased the question correctly. When searching for elusive effects
among a sea of random events by statistical means, whether in particle physics
or parapsychology, one must take care to apply statistics properly to the events
being studied. Misinterpreting genuine experimental results yields errors just
as serious as those due to faults in the design of the experiment.

Evidence for the existence of a phenomenon must be significant, persistent,
and consistent. Statistical analysis can never entirely rule out the possibility
that  the results  of an experiment were entirely due to chance—it can only
calculate the probability of occurrence by chance. Only as more and more
experiments  are  performed,  which  reproduce  the  supposed  effect  and,  by
doing so, further decrease the probability of chance, does the evidence for the
effect become persuasive.

To show how essential it is to ask the right question, consider an experiment in
which  the  subject  attempts  to  influence  a  device  which  generates  random
digits from 0 to 9 so that more nines are generated than expected by chance.
Each experiment involves generation of one thousand random digits. We run
the first experiment and get the following result:

51866599999944246273322297520235159670265786865762
83920280286669261956417760577150505375232340788171
46551582885930322064856497482202377988394190796683
36456436836261696793837370744918197880364326675561
63557778635028561881986962010589509079505189756148
71722255387675577937985730026325400514696800042830
49134963200862681703176774115437941755363670637799
08279963556956436572800286835535562483733337524409
90735067709628443287363500729444640394058938260556
35615446832321914949835991535024593960198026143550
34915341561413975080553492042984685869042671369729
59432799270157302860632198198519187171162147204313
26736371990032510981560378617615838239495314260376
28555369005714414623002367202494786935979014596272
75647327983564900896013913125375709712947237682165
84273385694198868267789456099371827798546039550481
93966363733020953807261965658687028741391908959254
79109139065222171490342469937003707021339710682734
97173738046984452113756225260095828324586288486644
14887777251716547950457638477301077505585332159232

The digit frequencies from this run are:
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Digit Occurrences

0 94

1 81

2 96

3 111

4 84

5 111

6 111

7 112

8 91

9 109

There's no obvious evidence for a significant excess of nines here (we'll see
how to calculate this numerically before long). There was an excess of nines
over the chance expectation, 100, but greater excesses occurred for the digits
3, 5, 6, and 7. But take a look at the first line of the results!

    51866599999944246273322297520235159670265786865762
                            .
                            .
                            .

These digits were supposed to be random, yet in the first thousand, the first
dozen for that matter, we found a pattern as striking as “999999”. What's the
probability of that happening? Just the number of possible numbers of d digits
which contain one or more sequences of p or more consecutive nines:

Plugging in 1000 for d and 6 for p yields:

So the probability of finding “999999” in a set of 1000 random digits is less
than one in a thousand! So then, are the digits not random, after all? Might our
subject, while failing to influence the outcome of the experiment in the way
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we've  requested,  have  somehow marked  the  results  with  a  signature  of  a
thousand-to-one probability of appearing by chance? Or have we simply asked
the wrong question and gotten a perfectly accurate answer that doesn't mean
what we think it does at first glance?

The latter turns out to be the case. The data are right before our eyes, and the
probability we calculated is correct, but we asked the wrong question, and in
doing so fell into a trap littered with the bones of many a naïve researcher.
Note the order in which we did things. We ran the experiment, examined the
data, found something seemingly odd in it, then calculated the probability of
that particular oddity appearing by chance. We asked the question, “What is
the probability of ‘999999’ appearing in a 1000 digit random sequence?” and
got  the answer “less  than one in a  thousand”,  a  result  most  people would
consider significant. But since we calculated the probability after seeing the
data, in fact we were asking the question “What is the chance that ‘999999’
appears in a 1000 digit random sequence which contains one occurrence of
‘999999’?”. The answer to that question is, of course, “certainty”.

In the original examination of the data, we were really asking “What is the
probability we'll find some striking sequence of six digits in a random 1000
digit  number?”.  We  can't  precisely  quantify  that  without  defining  what
“striking” means to the observer, but it is clearly quite high. Consider that I
could have made the case just  as strongly for  “000000”,  “777777” or any
other  six-digit  repeat.  That  alone reduces  the  probability  of  occurrence by
chance to one in ten. Or, perhaps I might have pointed out a run of digits like
“123456”, “012345”, “987654”, and so on; or the first five or six digits of a
mathematical constant such as Pi, e, or the square root of two; regular patterns
like “101010”, “123321”, or a multitude of others; or maybe my telephone or
license plate number, or the subject's! It is, in fact, very likely you'll find some
pattern you consider striking in a random 1000-digit number.

But, of course, if you don't examine the data from an experiment, how are you
going  to  notice  if  there's  something  odd  about  it?  Now  we'll  see  how  a
hypothesis  is  framed,  tested  by  a  series  of  experiments,  and  confirmed or
rejected by statistical analysis of the results. So, let's pursue this a bit further,
exploring  how  we  frame  a  hypothesis  based  on  an  observation,  run
experiments to test it, and then analyse the results to determine whether they
confirm or deny the hypothesis, and to what degree of certainty.

Our observation, based on examining the first thousand random digits, is that
“999999”  appears  once,  while  the  probability  of  “999999”  appearing  in  a
randomly chosen 1000 digit number is less than one in a thousand. Based on
this observation we then suggest:

Hypothesis: The sequence “999999” appears more frequently in
1000-digit sequences with the subject attempting to influence the

Introduction to Probability and Statistics http://www.fourmilab.ch/rpkp/experiments/statistics.html

13 of 22



generator than would be expected by chance.

We can now proceed to test this experimentally. If the sequence “999999” has
a probability of occurring in a 1000 digit sequence of 0.000995, then for a
thousand  consecutive  1000  digit  sequences  (a  million  digits  in  all),  the
probability of “999999” appearing will be 0.995, almost unity. (To be correct, it's
important to test each 1000 digit sequence separately, then sum the results for 1000 consecutive
sequences. If we were to scan all million digits as one sequence, we would count cases where
the sequence “999999” begins in one 1000 digit sequence and ends in the next. The probability
(which  you  can  calculate  from the  equation  above)  of  finding  “999999”  in  a  million  digit
sequence is 0.999995, somewhat higher than the 0.995 with the million digits are treated as
separate 1000 digit experiments.)

We  will  perform,  then,  the  following  experiment.  With  our  ever-patient
subject continuing to attempt to influence the output of the generator, we will
produce  a  million  more  sequences  of  1000  digits  and,  in  each,  count
occurrences of “999999”. Every 1000 sequences, we'll record the number of
occurrences, repeating the process until we've generated a thousand runs of a
million digits—109 digits in all. With that data in hand, we'll see whether the
“999999 effect” is genuine or a fluke attributable to chance.

Here is a plot of the number of occurrences of the sequence “999999” per
block of 1000 digits over the thousand repetitions of the thousand sequence
experiment. The number of occurrences expected by chance, 0.995, is marked
by the green line.

At the outset, the results diverged substantially from chance, as is frequently
the case for small sample sizes. But as the number of experiments increased,
the  results  converged  toward  the  chance  expectation,  ending  up  in  a
decreasing  magnitude  random  walk  around  it.  This  is  precisely  what  is
expected from probability theory, and hence we conclude no “999999 effect”
exists.
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Ensembles of Experiments: the X² (Chi-Square)
Test
So far, we've seen how the laws of probability predict the outcome of large
numbers  of  experiments  involving  random  data,  how  to  calculate  the
probability of a given experimental result being due to chance, and how one
goes  about  framing  a  hypothesis,  then  designing  and  running  a  series  of
experiments to test it.  Now it's time to examine how to analyse the results
from the  experiments  to  determine  whether  they  provide  evidence  for  the
hypothesis and, if so, how much.

Since its introduction in 1900 by Karl Peterson, the chi-square (X²) test has
become  the  most  widely  used  measure  of  the  significance  to  which
experimental  results  support  or  refute  a  hypothesis.  Applicable  to  any
experiment where discrete results can be measured, it is used in almost every
field of science. The chi-square test is the final step in a process which usually
proceeds as follows.

Based  either  on  theory  or  examination  of  empirical  data,  a
phenomenon is suggested to exist.

1.

A hypothesis is framed incorporating the supposed phenomenon.2.
An  experiment  is  designed  to  test  the  hypothesis.  The
experiment  must  produce  results  which  differ  based  on  the
validity of the hypothesis. The results of the experiment for the
hypothesis-false  (null  hypothesis)  case  are  calculated  and,  if
appropriate,  verified  by  a  control  experiment  in  which  the
hypothesised effect is excluded.

3.

A series of experiments are conducted, and the results tabulated.4.
The chi-square test is applied to determine the significance of the
discrepancy between the calculated null hypothesis case and the
experimental results, and the probability that the discrepancy is
the  result  of  chance.  If  that  probability  is  very  low,  the
experiment provides evidence for the hypothesis.

5.

No experiment or series of experiments can ever prove a hypothesis; one can
only rule out other hypotheses and provide evidence that assuming the truth of
the hypothesis better explains the experimental results than discarding it. In
many fields of science, the task of estimating the null-hypothesis results can
be formidable, and can lead to prolonged and intricate arguments about the
assumptions  involved.  Experiments  must  be  carefully  designed  to  exclude
selection effects which might bias the data.

Fortunately, retropsychokinesis experiments have an easily stated and readily
calculated null hypothesis: “The results will obey the statistics for a sequence
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of random bits.” The fact that the data are prerecorded guarantees (assuming
the experiment software is properly implemented and the results are presented
without selection or modification) that run selection or other forms of cheating
cannot occur. (Anybody can score better than chance at coin flipping if they're
allowed  to  throw  away  experiments  that  come  out  poorly!)  Finally,  the
availability of all the programs in source code form and the ability of others to
repeat  the  experiments  on  their  own  premises  will  allow  independent
confirmation of the results obtained here.

So, as the final step in analysing the results of a collection of n experiments,
each with k possible outcomes, we apply the chi-square test to compare the
actual results with the results expected by chance, which are just,  for each
outcome, its probability times the number of experiments n.

Mathematically,  the  chi-square  statistic  for  an  experiment  with  k  possible
outcomes,  performed  n  times,  in  which  Y1,  Y2,…  Yk  are  the  number  of
experiments which resulted in each possible outcome, where the probabilities
of each outcome are p1, p2,… pk is:

It's evident from examining this equation that the closer the measured values
are to those expected, the lower the chi-square sum will be. Further, from a
chi-square sum, the probability Q that the X² sum for an experiment with d
degrees of freedom (where d=k−1, one less the number of possible outcomes)
is consistent with the null hypothesis can be calculated as:

Where Γ  is the generalisation of the factorial function to real and complex
arguments:

Unfortunately, there is no closed form solution for Q, so it must be evaluated
numerically.  If  your  Web  browser  supports  JavaScript,  you  can  use  the
Chi-Square Calculator to calculate the probability from a chi-square value and
number of possible outcomes, or calculate the chi-square from the probability
and the number of possible outcomes.
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In applying the chi-square test, it's essential to understand that only very small
probabilities of the null hypothesis are significant. If the probability that the
null  hypothesis  can  explain  the  experimental  results  is  above  1%,  an
experiment is generally not considered evidence of a different hypothesis. The
chi-square  test  takes  into  account  neither  the  number  of  experiments
performed nor the probability distribution of the expected outcomes; it is valid
only  as  the  number  of  experiments  becomes large,  resulting  in  substantial
numbers for the most probable results. If a hypothesis is valid, the chi-square
probability should converge on a small value as more and more experiments
are run.

Now  let's  examine  an  example  of  how  the  chi-square  test  identifies
experimental  results  which  support  or  refute  a  hypothesis.  Our  simulated
experiment  consists  of  50,000  runs  of  32  random  bits  each.  The  subject
attempts to influence the random number generator to emit an excess of one or
zero bits compared to the chance expectation of equal numbers of zeroes and
ones. The following table gives the result of a control run using the random
number generator without the subject's attempting to influence it. Even if the
probability  of  various  outcomes  is  easily  calculated,  it's  important  to  run
control  experiments  to  make  sure  there  are  no  errors  in  the  experimental
protocol or apparatus which might bias the results away from those expected.
The table below gives, for each possible number of one bits, the number of
runs which resulted in that count, the expectation from probability, and the
corresponding  term  in  the  chi-square  sum.  The  chi-square  sum  for  the
experiment is given at the bottom.

Control Run
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Ones Results Expectation X² Term

0 0 1.16×10−5 1.16×10−5

1 0 0.000372529 0.000372529

2 0 0.0057742 0.0057742

3 0 0.057742 0.057742

4 0 0.418629 0.418629

5 3 2.34433 0.183383

6 15 10.5495 1.87756

7 27 39.1837 3.78839

8 124 122.449 0.0196425

9 340 326.531 0.555579

10 764 751.021 0.224289

11 1520 1502.04 0.214686

12 2598 2628.57 0.355633

13 4017 4043.96 0.179748

14 5506 5488.23 0.0575188

15 6523 6585.88 0.600345

16 6969 6997.5 0.11605
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17 6581 6585.88 0.00361487

18 5586 5488.23 1.74162

19 4057 4043.96 0.0420422

20 2570 2628.57 1.30526

21 1531 1502.04 0.558259

22 749 751.021 0.00544023

23 345 326.531 1.04463

24 126 122.449 0.102971

25 41 39.1837 0.0841898

26 6 10.5495 1.96196

27 0 2.34433 2.34433

28 2 0.418629 5.97362

29 0 0.057742 0.057742

30 0 0.0057742 0.0057742

31 0 0.000372529 0.000372529

32 0 1.16×10−5 1.16×10−5

X² Sum 23.8872

Entering the X² sum of 23.8872 and the degrees of freedom (32, one less than
the 33 possible outcomes of the experiment) into the Chi-Square Calculator
gives a probability of 0.85. This falls within the “fat region” of the probability
curve, and thus supports the null hypothesis, just as we expected.

Next, we invite our subject to attempt to influence the random output of our
generator.  How?  Hypotheses  non  fingo.  Let's  just  presume  that  by  some
means: telekinesis,  voodoo, tampering with the apparatus when we weren't
looking—whatever,  our subject  is  able to bias the generator so that  out of
every  200  bits  there's  an  average  of  101  one  bits  and  99  zeroes.  This
seemingly subtle bias would result in an experiment like the following.

Run with Subject
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Ones Results Expectation X² Term

0 0 1.16×10−5 1.16×10−5

1 0 0.000372529 0.000372529

2 0 0.0057742 0.0057742

3 0 0.057742 0.057742

4 1 0.418629 0.807377

5 2 2.34433 0.0505731

6 13 10.5495 0.569236

7 23 39.1837 6.68423

8 93 122.449 7.08254

9 335 326.531 0.219654

10 705 751.021 2.82011

11 1424 1502.04 4.05491

12 2491 2628.57 7.20039

13 3810 4043.96 13.5357

14 5480 5488.23 0.0123496

15 6699 6585.88 1.94299

16 6871 6997.5 2.28673
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17 6639 6585.88 0.428464

18 5449 5488.23 0.280456

19 4298 4043.96 15.9586

20 2692 2628.57 1.5304

21 1614 1502.04 8.34494

22 795 751.021 2.57533

23 347 326.531 1.28312

24 150 122.449 6.19891

25 51 39.1837 3.56333

26 14 10.5495 1.12861

27 3 2.34433 0.183383

28 1 0.418629 0.807377

29 0 0.057742 0.057742

30 0 0.0057742 0.0057742

31 0 0.000372529 0.000372529

32 0 1.16×10−5 1.16×10−5

X² Sum 89.6775

The  graph  of  the  result  versus  the  expectation  doesn't  show  any  terribly
obvious  divergence  from  the  expectation,  yet  the  chi-square  test
unambiguously fingers the bias. A X² sum of 89.6775 in an experiment with
33 possible outcomes (32 degrees of freedom) has a probability of occurring
by  chance  of  0.00000022—about  two  in  ten  million—a highly  significant
result,  worthy  of  follow-up  experiments  and  investigation  of  possible
mechanisms which might explain the deviation from chance.
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